Generation of high-fidelity quantum control methods for multilevel systems

J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger

Journal
Physical Review A
Abstract

In recent decades there has been a rapid development of methods to experimentally control individual quantum systems. A broad range of quantum control methods has been developed for two-level systems; however, the complexity of multilevel quantum systems make the development of analogous control methods extremely challenging. Here we exploit the equivalence between multilevel systems with SU(2) symmetry and spin-1/2 systems to develop a technique for generating new robust, high-fidelity, multilevel control methods. As a demonstration of this technique, we develop adiabatic and composite multilevel quantum control methods and experimentally realize these methods using a 171Yb+ ion system. We measure the average infidelity of the process in both cases to be around 104 , demonstrating that this technique can be used to develop high-fidelity multilevel quantum control methods and can, for example, be applied to a wide range of quantum computing protocols, including implementations below the fault-tolerant threshold in trapped ions.