Proposed Parametric Cooling of Bilayer Cuprate Superconductors by Terahertz Excitation

S. J. Denny, S. R. Clark, Y. Laplace, A. Cavalleri, and D. Jaksch

Journal
Physical Review Letters
Abstract

We propose and analyze a scheme for parametrically cooling bilayer cuprates based on the selective driving of a c-axis vibrational mode. The scheme exploits the vibration as a transducer making the Josephson plasma frequencies time dependent. We show how modulation at the difference frequency between the intrabilayer and interbilayer plasmon substantially suppresses interbilayer phase fluctuations, responsible for switching c-axis transport from a superconducting to a resistive state. Our calculations indicate that this may provide a viable mechanism for stabilizing nonequilibrium superconductivity even above Tc, provided a finite pair density survives between the bilayers out of equilibrium.

Related tags
NQIT Author